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ABSTRACT: Water supply reliability is expected to be affected by both precipitation amount 

and distribution changes under recent and future climate change. We compare historical (1951-

2010) changes in annual-mean and annual-maximum daily precipitation in the global set of 

station observations from GHCN and climate models from the Inter-Sectoral Impact Model 

Intercomparison Project (ISI-MIP), and develop the study to 2011-2099 for model projections 

under high radiative forcing scenario (RCP8.5). We develop a simple rainwater harvesting 

system (RWHS) model and drive it with observational and modeled precipitation. We study the 

changes in mean and maximum precipitation along with changes in the reliability of the model A
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RHWS as tools to assess the impact of changes in precipitation amount and distribution on 

reliability of precipitation-fed water supplies. Results show faster increase in observed maximum 

precipitation (10.14% per K global warming) than mean precipitation (7.64% per K), and 

increased reliability of the model RWHS driven by observed precipitation by an average of 0.2% 

per decade. The ISI-MIP models show even faster increase in maximum precipitation compared 

to mean precipitation. However, they imply decreases in mean reliability, for an average 0.15% 

per decade. Compared to observations, climate models underestimate the increasing trends in 

mean and maximum precipitation and show the opposite direction of change in reliability of a 

model water supply system. 

 

(Key Terms: Climate Change, Mean and Maximum Precipitation, Precipitation Distribution 

Change, Water Resources Reliability, Rainwater Harvesting Systems, Climate Models, 

Observations.) 

Introduction  

The Fifth Assessment Report of Inter-Governmental Panel on Climate Change (IPCC) 

indicates that globally, near-surface air temperature increased by approximately 0.78°C, over the 

20th century, with greater trend slope in recent decades (Stocker et al., 2013). Anthropogenic 

climate change is expected to change the distribution, frequency and intensity of precipitation 

and result in increased intensity and frequency of floods and droughts, with damaging effects on 

environment and society (Dankers et al., 2013; Field, 2012; Karl et al., 2009; Min et al., 2011; 

O’Gorman and Schneider, 2009; Solomon et al., 2007; Trenberth, 2011; Trenberth et al., 2003). 

As a result of global warming, climate models and satellite observations both indicate that 

atmospheric water vapor content has increased at a rate of approximately 7% per K warming 

(Allen and Ingram, 2002; Held and Soden, 2006; Trenberth et al., 2005; Wentz et al., 2007), as 

expected from the Clausius-Clapeyron equation under stable relative humidity (Held and Soden, 

2006; Pall et al., 2006). Although change in global-mean precipitation with respect to warming 

does not scale with the Clausius-Clapeyron equation, and from energy balance considerations the 

rate of increase might be expected to be around 2% K-1 (Held and Soden, 2006; Wu et al., 2013), 

impact of global warming on extreme precipitation is expected to be stronger (Pall et al., 2006): 

increasing availability of moisture in the atmosphere can be expected to result in increased 
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intensity of extreme precipitation (Allan and Soden, 2008; Allen and Ingram, 2002; Asadieh and 

Krakauer, 2015; O’Gorman and Schneider, 2009; Trenberth, 2011; Trenberth et al., 2003), with 

proportionally greater impact than for mean precipitation (Lambert et al., 2008; Pall et al., 2006).  

Analysis of station observations shows that extreme (annual-maximum daily) precipitation 

has increased by 10% per K of global warming over 1901 to 2010, which is even larger than the 

7% K-1 slope of the Clausius-Clapeyron equation (Asadieh and Krakauer, 2015). Faster increase 

in extreme precipitation than mean precipitation implies a change in precipitation distribution, 

where the climate shifts to fewer rainy days and more intense precipitation. Changes in 

precipitation distribution can result in increased intensity and frequency of flood and drought 

events (Karl et al., 2009; Ricko et al., 2016) and also can affect the availability of fresh water 

resources (Karl et al., 2009; Li et al., 2013; Liu and Allan, 2013; Oki and Kanae, 2006; Polson et 

al., 2013; Schewe et al., 2013). Such changes in precipitation distribution could affect the 

capability of rainwater-fed tanks and reservoirs to capture excessive precipitation and surface 

run-off (Arnell, 2004; Asadieh and Krakauer, 2015; Hanson and Vogel, 2014; Kumar and 

Lawrence, 2014; Su et al., 2009), requiring consideration of both precipitation amount and 

distribution changes in order to design reliable water supply systems (Asadieh and Krakauer, 

2015). Climate change impacts on water resources have been widely noted as a concern (Arnell, 

2004; Brekke et al., 2009; Oki and Kanae, 2006; Stocker et al., 2013; Vörösmarty et al., 2000). 

Climate change may increase water stress in regions that experience decreased precipitation and 

run-off. Even regions with increased average precipitation and run-off may face increased stress 

on water resources if precipitation distributions change and the excess water is concentrated in 

already wet periods and seasons (Arnell, 2004; Oki and Kanae, 2006). Thus, change in the 

seasonality of precipitation as well as its annual total may affect the performance of reservoirs in 

terms of water supply and flood control (Payne et al., 2004). Global (Arnell, 2004; Kumar and 

Lawrence, 2014; Oki and Kanae, 2006) as well as regional (Brekke et al., 2004; Fowler et al., 

2003; Raje and Mujumdar, 2010; Vicuna et al., 2007) studies have investigated the changes in 

reliability of water supply systems due to changes in climate and precipitation pattern. Earlier 

regional studies show future changes in reliability of reservoirs due to the changes in climate, 

projected by climate models (Brekke et al., 2004; Raje and Mujumdar, 2010; Vicuna et al., 

2007), with some studies indicating disagreement between models on the direction of change 

(Brekke et al., 2004).  Climate models are known to disagree on the magnitude and direction of 
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changes in precipitation pattern among themselves (Schewe et al., 2013) and compared to 

observations (Jones and Reid, 2001; Mcguffie et al., 1999). This disagreement leads to 

uncertainty in the impacts of climate change on water resources (Asadieh et al., 2016; Brekke et 

al., 2004; Schewe et al., 2013). However, few studies have systematically examined, at a global 

scale, the impact of recent and projected changes in precipitation amount and distribution on the 

reliability of model water supply systems designed based on past precipitation distribution.  

Rainwater harvesting (RWH) has long been used as a sustainable water resource and is 

recognized as one of the tools of Sustainable Urban Drainage Systems (SUDS) (Mbilinyi et al., 

2005; Palla et al., 2011). It limits the demand for potable water from other sources in urban areas 

as well as controlling excessive surface run-off (Helmreich and Horn, 2009; Jones and Hunt, 

2010; Liaw and Tsai, 2004; Palla et al., 2011; Villarreal and Dixon, 2005). Water harvesting and 

storage is also important in agricultural areas for increasing yields through allowing small-scale 

sustainable irrigation (Wisser et al., 2010). Harvested precipitation is already used as a water 

resource, particularly in areas with arid climate, limited water resources and undeveloped water 

supply systems. Increasing demand for water in recent decades as well as recent interests in 

green infrastructure has resulted in practice of RWH in humid and/or urbanized  areas as well 

(Jones and Hunt, 2010). The capacity to store rainwater improves the reliability of water supply 

as it limits the impact of temporal variability of precipitation events (Mwenge Kahinda et al., 

2008). However, its performance is dependent on precipitation amount and distribution 

(Basinger et al., 2010; Fewkes, 2000). 

In this paper, we analyze historical (1951-2010) changes in annual-mean and annual-

maximum daily precipitation in globally distributed weather station observations (GHCN-Daily) 

and bias-corrected simulated precipitation from global climate models prepared under the Inter-

Sectoral Impact Model Intercomparison Project (ISI-MIP), which include both the ‘historical’ 

time period 1951-2010 and the ‘future’ time period of 2011-2099. The high radiative forcing 

scenario (representative concentration pathway, RCP) RCP8.5 (Moss et al., 2010) is selected for 

future precipitation projections, as this scenario projects the highest increase in temperature, and 

consequently the most distinct implication of climate change for precipitation distribution, 

compared to the lower radiative forcing scenarios. For sake of a fair comparison, historical 

climate model simulations are temporally and spatially subsampled to match the availability of 
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observations. A different rate of change in annual-mean and annual-maximum daily precipitation 

would be one indication of a change in precipitation distribution. 

To quantify the possible impacts of changes in the daily precipitation distribution on water 

supply reliability, we consider a simple model rainwater harvesting system (RWHS). We 

formulate indices of RWHS specific storage capacity and specific catchment area, allowing 

consideration of system performance changes over time, independent of system size. This model 

RWHS is driven by the observational and modeled daily precipitation series to assess changes in 

reliability of water supply across land areas under recent and projected climate changes and 

relation of those to changes both in precipitation amount and in precipitation distribution. In a 

supplementary analysis, the precipitation times series are scaled to the amount of the first decade, 

before being used as inputs to the model RWHS. Through this scaled precipitation analysis, 

difference in system volumetric reliability in later decades for each station/grid-cell can be 

attributed specifically to change in precipitation distribution, controlling for change in 

precipitation amount. 

Overall, changes in annual-mean and annual-maximum precipitation are studied along with 

changes in reliability of the model RWHS to investigate the impacts of changes in precipitation 

amount and precipitation distribution on reliability of renewable water resources. We note that 

the model RHWS is not intended to replicate any particular existing or proposed water supply 

system. This study uses the hypothetical model RWHS to investigate possible changes in water 

reliability across land regions due to changes in climate and consequently, precipitation 

distribution, and does not investigate or propose the suitability of the studied stations and regions 

for development of actual RWHS facilities. 

Data and Methodology 

The Global Historical Climatology Network (GHCN) is a database managed by the 

National Climatic Data Center, Arizona State University and the Carbon Dioxide Information 

Analysis Center. GHCN contains records from over 75000 stations in 180 countries and 

territories. Numerous daily variables are provided, including maximum and minimum 

temperature, total daily precipitation, snowfall, and snow depth; however, about two thirds of the 

stations report precipitation only. Both the record length and period of record vary by station and 
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cover intervals ranging from less than 1 year to more than 175 years (Durre et al., 2010; Menne 

et al., 2012). For analyses performed in this study, we used the GHCN-daily stations with at least 

30 years of available precipitation data over the time period of 1951-2010, which includes nearly 

15200 stations globally. The years with available precipitation data were defined as the ones with 

daily precipitation data available for at least 80 percent of the days. 

The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) (Warszawski et al., 

2013) provides bias-corrected daily meteorological fields, at a uniform 0.5 degree spatial 

resolution, from 5 selected GCMs from the fifth phase of the Coupled Model Intercomparison 

Project (CMIP5), which can provide the opportunity to investigate the hydrological impact of 

precipitation change projections from a range of GCMs after bias correction (Dankers et al., 

2013). The first fast-track phase of the ISI-MIP project presents outputs from the following 5 

GCMs: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and 

NorESM1-M (Warszawski et al., 2013), the precipitation simulations of which have been used in 

this study. 

The GHCN observational data are station observations. However, the climate model 

simulations are grid-based. Climate models can simulate precipitation for all years of a specified 

time interval, covering all coordinates of the globe thoroughly, which is different from the spatial 

and temporal coverage of station observation datasets that usually cover only a certain part of the 

continents with missing data for a considerable number of years. This results in some difficulties 

in comparing climate model outputs with observations. To provide a better basis for comparison, 

a subsampled dataset is created for each of the 5 ISI-MIP climate models, in which each of the 

GHCN stations takes the modeled precipitation data of the grid-cell in which its coordinates fit. 

The new dataset is created with the same number of stations and same data availability pattern as 

GHCN. In this way of sampling model output, if GHCN dataset does not have recorded 

precipitation data for a specified day, the newly created dataset will not have data for that day 

either. The newly created dataset is called the sub-sampled ISI-MIP dataset. The subsampling is 

performed for each of the 5 GCMs from ISI-MIP. Hence, in total, 5 subsampled datasets are 

created, one for each of the GCMs, each of which has GCM-obtained daily precipitation data for 

the same 15200 stations as the GHCN. 
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Changes in Mean and Maximum precipitation 

Two precipitation indices considered in this study are mean and maximum precipitation. 

Mean precipitation is defined as the annual-mean daily precipitation, which is the annual average 

of daily precipitation values. Maximum precipitation is defined as the annual-maximum daily 

precipitation, in which the maximum daily precipitation is selected for each year (Rx1day) 

(Donat et al., 2013). 

Precipitation time series of station observations (GHCN-daily) as well as simulations of the 

5 GCMs provided by ISI-MIP are statistically analyzed to detect the trends in mean and 

maximum precipitation over the historical time period of 1951-2010 on global and continental 

scale. The relative magnitude of identified trends in mean and maximum precipitation provides 

some indication of changes in precipitation distribution, as well as the changes in precipitation 

amount. The calculations are extended for future projections of ISI-MIP climate models, under 

the high radiative forcing scenario RCP8.5 (Moss et al., 2010), for the time period of 2011-2099 

in order to investigate modeled changes in precipitation amount and distribution. 

The trend slope (b) obtained from linear regression is used to quantify the strength of 

trends in mean and maximum precipitation time series. The relative change in precipitation is 

defined as the trend slope divided by the average precipitation value of the station and/or grid-

cell (�/��). The relative change in precipitation per K of warming is also calculated via linear 

regression of the natural logarithm of annual-mean or maximum precipitation against global 

mean near-surface temperature, which indicates the percentage change in precipitation per K 

global warming. To calculate this parameter for each ISI-MIP model, modeled global annual 

mean near-surface temperature, obtained from the corresponding CMIP5 climate model, is 

selected as the predictor. The global mean temperatures are from the original CMIP5 dataset and 

are not bias-corrected, because ISI-MIP bias-corrected fields are available only over land areas. 

The trends are calculated for each station and/or model grid-cell precipitation time series. 

The obtained values are averaged globally as well as by continent in order to present the general 

trend of precipitation in different regions. For all the results obtained from the climate models, 

the averaging is weighted by grid cell area, meaning that the larger cells in tropics have higher 

impact on the average than the smaller cells in high latitudes. Continents studied comprise 
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Africa, Asia, Europe, North America, South America and Oceania. The subcontinent of India has 

results shown separately and is also included in Asia. 

Model RWHS 

The basic components of a simple rain water harvesting system (RWHS) are a catchment 

area (such as building roof),  delivery system (guttering), and storage (Liaw and Tsai, 2004). 

Earlier studies on design of RWHS include multiple approaches such as continuous mass balance 

(Fewkes, 2000), non-parametric rainfall simulation (Basinger et al., 2010) and statistical 

methods (Guo and Baetz, 2007). Behavioral analysis is considered as the most common 

methodology. This method simulates the inflow, outflow and change in storage volume of the 

rainwater harvesting system based on mass balance and simple assumptions about water demand 

(Fewkes and Butler, 2000; Liaw and Tsai, 2004; Palla et al., 2011). In this study, a behavioral 

model is implemented to perform continuous simulation of a RWHS. The simulation is derived 

at a daily temporal resolution with precipitation observations or bias-corrected GCM simulations 

as input. Results of the continuous simulation are summarized in terms of volumetric system 

reliability in delivering the water demand. 

The water release rule considered here is yield after spillage (YAS), which can be 

understood by considering that the demand is withdrawn at each time step, after the rainfall has 

been added to the storage and any spillage has taken place. The behavioral model (Figure 1) is 

based on daily mass balance equations: 

�� = ���(�� , ��−1) (1) 

�� = ���(��−1 + �� ,��) −  �� (2) 

where Dt [L
3] is water demand at time t; St [L

3] is storage at the beginning of the tth time 

period; Qt [L
3] is inflow during the tth time period; Yt [L

3] is release during the tth time period; 

and Ca [L3] is storage capacity. Assuming that the tank is covered, evaporation losses from the 

system as well as the incident precipitation over the tank are neglected in the mass balance 

equation. The inflow Qt

�� = �� .� . � 

 is evaluated as follows: 

(3) 
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where Ar [L2

The performance of RWHS is generally evaluated in terms of reliability. This can be 

expressed as the total actual water supply divided by demand (volumetric reliability, R

] is the collection surface area, P [L] is the daily precipitation amount and f [–] 

is the runoff coefficient. The runoff coefficient needs field measurements to be obtained for a 

particular collection device, but for simplicity, the number is assumed to be constant and equal to 

0.85 (Liaw and Tsai, 2004; Sturm et al., 2009). We do not specifically consider quality aspects 

of the collected water and therefore the first flush phenomenon is disregarded (Palla et al., 2011). 

We do not distinguish between snow and rain precipitation inputs. We assume that daily system 

demand is constant, which may be a reasonable approximation for domestic or industrial use; for 

irrigation use, a more complex formulation where demand scales with potential evaporation and 

depends on antecedent precipitation, as well as on cropping schedules, would be more realistic 

(Girvetz and Zganjar, 2014). 

v) 

(McMahon et al., 2006). This is considered an informative index for RWHS performance 

(Fewkes, 2000; Liaw and Tsai, 2004; Zhang et al., 2009), for which a value approaching 1 is 

generally desirable. Rv

�� =
∑ ����=1  ∑ ����=1  

 can be expressed mathematically as: 

(4) 

With this model RWHS, multiplying the daily demand amount by any arbitrary factor of ß 

and multiplying the catchment area and storage capacity by the same ß factor as well will 

accommodate the same volumetric reliability for the system, which means the daily demand 

value can be excluded from the formulation (Appendix 1). Accordingly, normalizing by the 

demand variable, we develop a formulation for the model RWHS in terms of scaled quantities, 

Specific Catchment Area (As) and Specific Storage Capacity (Cs

�� =
�� × ����  

), defined as follows: 

(5) 

�� =
����  (6) A
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where As [-] is Specific Catchment Area; Cs [T] is Specific Storage Capacity and �� is 

average daily precipitation over the study area [L]. The value of �� is included in the definition of 

As

The specific storage capacity (C

 to make it dimensionless. 

s) can be described as: the number of days that the water 

demand of the system can be supplied using the water stored in the storage. The specific 

catchment area (As) can be described as the fraction of the total demand that can be supplied 

using the total precipitation falling on the specified catchment area over the considered time 

period. As=1 corresponds to the minimum collection area necessary for the system to be able to 

supply the accumulated demand over the considered time period, using the accumulated 

precipitation, if the storage capacity is great enough that there is no spillages. Where storage is 

more limited, the system is not able to store and use all the precipitation collected, because of 

uneven distribution of the precipitation over time, and has to spill some of the precipitation, 

particularly if heavy rain is concentrated in a short period. Hence, an As

Changes in model RWHS volumetric reliability  

 value of larger than 1 is 

usually required to satisfy the system’s demand. The exact value can be calculated based on the 

given precipitation time series (Appendix 1). 

Change in precipitation amount as well as precipitation distribution can result in changes in 

fresh water resource supply reliability, as the designed storages may not be able to hold 

excessive amounts of water from intense precipitation events. Study of possible changes in 

available sustainable water resources, induced by changes in precipitation, is accomplished here 

through the application of the simple model RWHS described above. The volumetric reliability 

(Rv) of a RWHS is representative of the capability of the system to supply the water demand 

from precipitation events. The expectation is that with an evenly distributed precipitation pattern, 

an adequately designed RWHS can capture the optimum amount or rainwater for a specified 

demand pattern and storage capacity. If the precipitation shifts to a more uneven distribution, for 

instance more intense precipitation over fewer rainy days, then even with the same total annual 

precipitation amount, the system will fail to capture the same amount of rainwater and would be 

less reliable. With constant system characteristics over time, changes in either precipitation 

amount or precipitation distribution can result in changes in the volumetric reliability of the 

RWHS. 
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The historical time period of 1951 to 2010 is divided into 6 decades as 1951-1960, 1961-

1970… and 2001-2010, change in reliability throughout these 6 decades is studied for each 

station and/or grid cell. For each studied station, an individual model RWHS is designed based 

on the precipitation time series of that station for the 1951-1960 decade. The design parameters 

are the specific catchment area (As) and specific storage capacity (Cs). The model RHWS is 

sized such that the system would have Rv of 80% for that decade. The designed RWHS of the 

station is then kept constant and the time series of the following 5 decades are input into model 

and Rv of the system for each decade is calculated. Consequently, each station will have a 6-

point time series of Rv. Trend in Rv at each station and/or grid-cell is calculated using linear 

regression, which can show any increase or decrease in Rv

The objective of the design procedure is to size the values of A

 of the system depending on the 

change in amount and distribution of the precipitation.  

s and Cs such that the 

RWHS would have a Rv of 80% for the given precipitation time series (the first decade time 

series, in this case). Given As, Cs and precipitation time series, the value of Rv can be calculated 

using the behavioral model. For a decadal time frame, the values of As, Cs and 3652 daily 

precipitation values should be input into the behavioral model to calculate the corresponding 

value of Rv. It is not practical to analytically calculate the value of Cs for given values of Rv, As 

and precipitation. With value of Rv being defined, defining the value of As as well will leave the 

problem with only one unknown variable. As stated earlier, an As value of larger than 1 is 

usually required to completely satisfy the system’s demand. Here, the value of As is set to be 

equal to 2 for all the stations. With given As value and precipitation time series, changing the Cs 

value will result in different Rv values, defining the storage-reliability curve (Appendix 1). A 

search process can be utilized in order to tune Cs such that the Rv value become 80%, or in other 

words: optimize the Cs value such that the difference between the corresponding Rv value and 

the target Rv value (which is 80%) be close to zero. Hence, the problem can be defined as either 

a nonlinear equation-solving problem or an optimization problem with one decision variable (Cs) 

and can be solved utilizing any optimization method. For each station, having the precipitation 

time series of the 1951-1960, as well as the defined values of As =2 and Rv =80%, the storage 

capacity is chosen using a metaheuristic optimization algorithm to complete the design of the 

model RWHS. 
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The target value of Rv =80% for the design procedure is selected through a sensitivity 

analysis. Different target values of Rv, ranging from 60% to 95% (with increments of 5%) are 

selected, and the design and trend analysis process are repeated for all the GHCN stations for 

1951-2010. The global average of the trend in the Rv through the studied 6 decades among all the 

stations is then calculated. Analysis show that selection of Rv values lower than or equal to 80% 

(for example 70 or 75%) result in similar global trend in Rv, while selection of larger Rv target 

values result in sharp change in the global average value. This can be explained with the storage-

capacity curve (Figure A1.b, Appendix 1), as for the high values of Rv, the required storage 

capacities raises drastically. Hence, selection of a high target value for Rv

An increase/decrease in precipitation amount is known to respectively increase/decrease 

the reliability, while an impact of change in precipitation distribution associated with climate 

changes may also exist. Running the model RWHS with historic or scenario precipitation time 

series would include the impact of both changes in precipitation amount and distribution on the 

system reliability. We isolate the impacts of changing precipitation distribution from those of 

changing precipitation amount by also conducting a ‘scaled’ analysis in which the precipitation 

time series are scaled to the first decade (1951-1960), which means the precipitation time series 

of later decades are multiplied by a factor such that the mean precipitation of the later decades 

are equal to the initial decade. This results in equal total decadal precipitation input for all 

decades from 1951-2010, and hence the obtained difference in volumetric reliability of the 

system in later decades for each station/grid-cell can be attributed to the change in precipitation 

distribution of the area as it affects water supply reliability represented by the volumetric 

reliability of the model RWHS. The analysis of trend in volumetric reliability of the RWHS is 

performed on the GHCN stations and subsampled ISI-MIP models for 1951-2010. The design of 

the RWHS is separate for observation stations and each of the climate model datasets. The 

design of the sub-sampled ISI-MIP data is also different from the full land area ISI-MIP data, 

since the sub-sampled data is station-based and full data is grid-based. The analysis is further 

developed to the 2011-2099 time period using the ISI-MIP climate models’ precipitation 

projections under high radiative forcing scenario (RCP8.5), using the same RHWS models 

designed for the 1951-2010 full ISI-MIP. 

 would result in 

significantly larger designed storage capacities that are more sensitive to inter-decadal 

precipitation fluctuations. 
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Results 

Trends in Mean and Maximum precipitation for 1951-2010 and 2011-2099 (GHCN 

and ISI-MIP)  

Table 1 presents the changes in historical mean and maximum precipitation for 1951-2010 

for GHCN observational data as well as the subsampled ISI-MIP models. Table 1 presents global 

averages over all stations and/or grid-cells. Observation is only one dataset; hence it has one 

global average for each parameter. The 5 climate models give 5 global averages, of which we 

present the minimum, maximum, median, mean, and standard deviation in Table 1. Figure 2 

illustrates the maps of average precipitation and trend for mean and maximum precipitation in 

GHCN stations for 1951-2010. Figure 3 illustrates the results as boxplots of trend parameters for 

all 5 models of ISI-MIP (full  and subsampled) on global as well as continental scales for 1951-

2010 and 2011-2099 (under RCP8.5 scenario) time periods, showing observations (GHCN) as 

colored (green and purple) markers. The boxplots show the minimum, 25th percentile, median, 

75th

On average, both observations and climate models indicate that mean and maximum 

precipitation have increased over 1951-2010. Table 1 shows that on global average, the 

subsampled ISI-MIP models show very similar mean precipitation compared to the observations. 

This agreement can be expected given the bias-correction procedure applied in ISI-MIP. The 

small value of standard deviation also indicates very good agreement among the models. In case 

of maximum precipitation, the observational average value of 60.83 mm day

 percentile and maximum value obtained from the climate models. 

-1 is significantly 

larger than all the models. This is expected because of the spatial scale mismatch between 

models (0.5 degree grid cells) and observations (rain gauges representing very small areas) 

(Asadieh and Krakauer, 2015). As seen in the 5th and 6th columns of Table 1 and Figure 3a, both 

observations and models show increasing trend for mean and maximum precipitation in relative 

terms (% yr-1), although the average increases obtained from the models are smaller than those 

identified in observations. Looking at the change per degree global warming, as seen in the 7th 

and 8th columns of Table 1 and in Figure 3d, maximum precipitation shows higher average 

relative change per degree warming (% K-1) than mean precipitation in both observations and 

models. North America, Oceania, Europe, Asia, South America and Africa respectively contain 

about 41, 27, 13, 7, 7 and 5 % of the stations of GHCN dataset, which shows the significant 
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impact of the results of North America and Oceania on the global average. Figures 3a and 3d 

show that North America and Europe show more similar results to the global average compared 

to the other continents, while stations in Oceania show a wider range of trend results. The large 

range of trend results in continents of South America and Africa may possibly be attributed to 

lower density of stations in those areas compared to the other continents (Figure 2). Because of 

the low number of stations, these numbers may not be representative of general changes over 

these continents. 

The global average of 10.14% increase in maximum precipitation per K global warming 

for the GHCN observational data is very close to the 10% per K value obtained from the 

HadEX2 gridded observation-based product by an earlier study (Asadieh and Krakauer, 2015), 

although the average value of 7.34 % K-1 for the subsampled bias-corrected ISI-MIP models is 

lower than the average value of 8.43 % K-1

Land areas with very low precipitation rates are sensitive to changes in precipitation, 

especially in case of climate model simulations, since very small change in the precipitation will 

translate in high relative change values, which may not be realistic or highly uncertain among the 

models. The 9

 for CMIP5 models, obtained in the aforementioned 

study. 

th and 10th columns show the precipitation-weighted global averages of relative 

change per degree warming (% K-1

where x represents the target parameter to be averaged for each grid cell, GridCellArea

) for mean and maximum precipitation, respectively. This 

weighting is more sensitive to large absolute changes in precipitation amount over wet areas, 

rather than large relative changes over dry areas. This weighted averaging has been done using 

the following formula: 

�̅ =  
∑( �� ∗ ������������� ∗ �������������� )∑( ������������� ∗ �������������� )  

i  is the 

corresponding grid cell’s area and Precipitationi  is the corresponding grid cell’s average 

precipitation (mean or maximum) value for that study period. For averaging the observations and 

subsampled model outputs, the GridCellArea is eliminated from the formula since the stations do 

not come with defined grid cell areas. Note that regardless of the averaging procedure, the 

GHCN observations show a greater increase in mean precipitation over recent decades at station 
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locations than any of the 5 bias-corrected GCMs in ISI-MIP, while the fractional increase in 

maximum precipitation seen in observations is within the wide range of inter-GCM variability. 

Table 2 presents average changes in historical mean and maximum precipitation for 1951-

2010 for the 5 ISI-MIP climate models over the full land area (not subsampled to match with 

GHCN observations as in Table 1). The ISI-MIP models’ global land means show lower values 

of average precipitation, but higher average rate of increase in precipitation (sensitive to the 

averaging procedure), compared to the subsampled dataset. The faster increase in maximum 

precipitation than mean precipitation is more distinct in full ISI-MIP model simulations. On 

global average, the models simulate an increase rate of 0.039% per year for mean precipitation 

and 0.074% per year for maximum precipitation. This is comparable with the average increase 

rat of 0.0775% per year in maximum precipitation for 1901-2010, obtained from 15 climate 

models from CMIP5 in an earlier study (Asadieh and Krakauer, 2015). 

Table 3 presents the changes in future mean and maximum precipitation projected over 

2011-2099 projected by the 5 ISI-MIP climate models, under the high radiative forcing scenario 

(RCP8.5). According to Table 3, the ISI-MIP climate models on average predict that mean 

precipitation would increase by 0.052 % per year. They also on average predict that maximum 

precipitation over land will increase faster than mean precipitation, with a rate of approximately 

0.165 % per year. The first and second column of the Table 3 also indicate that climate models 

show better agreement on the average mean precipitation that on the average maximum 

precipitation, for future projections, considering the low value of standard deviation for mean 

precipitation. Tables 2 and 3 show that mean precipitation from the climate models increases 

from 2.37 mm day-1 for the latter half of 20th century to 2.47 mm day-1 for the 21st century and 

average maximum precipitation increases from 33.43 mm day-1 to 37.77 mm day-1

Table 1 to 3 as well as Figs 3-e and f shows that according to climate models, mean and 

maximum precipitation will increase at a greater rate (% per year) in future compared to the 

historical time period. However, maximum and mean precipitation are projected to have lower 

rates of increase per K warming in the future compared to the historical time period. On the other 

hand, considering the underestimation of observed increases seen in the historical results of the 

. This also 

indicates that in relative terms, maximum precipitation shows a faster increase than mean 

precipitation. 
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models, it seems possible that these future changes in mean and maximum precipitation might 

also be underestimated (Asadieh and Krakauer, 2015). 

Trends in reliability of the model RWHS driven by 1951-2010 and 2011-2099 

precipitation time series (GHCN and ISI-MIP)  

Table 4 presents the global average of results of the absolute change in decadal volumetric 

reliability (Rv) of the model RWHS applied on the GHCN observation stations as well as the 5 

climate models’ bias-corrected data from ISI-MIP (full  and subsampled). Columns 1 to 6 show 

the change in volumetric reliability of the RWHS per decade (%/decade) from the initial 80% 

value. The percentages shown in the RWHS results represent the absolute percent change in 

decadal volumetric reliability (change from the initial 80%). Columns 7 to 12 show change in 

decadal volumetric reliability of the model RWHS per K of global warming (% K-1

As seen in column 1, precipitation time series based on observations show that on global 

average over station locations, reliability of the hypothetical model water supply system has been 

increasing at a rate of 0.20% per decade for the 1951-2010 time period. However, the 

). Results are 

shown for real (observed or model) precipitation as well as for scaled precipitation. Figure 4 

illustrates the results shown in Table 4 as boxplots for all 5 models of ISI-MIP (full and 

subsampled) on global as well as continental scales for 1951-2010 and 2011-2099 (under 

RCP8.5 scenario) time periods, showing observations (GHCN) as colored (green and pink) 

markers. As seen in Figure 4, the scaled precipitation shows a smaller range of trend magnitude 

compare to the actual precipitation. As shown previously, mean and maximum precipitation are 

both increasing since 1951. Figure 3a shows that for the continents of North America, South 

America, Europe, Africa and Asia as well as the global average, both mean and maximum 

precipitation had increasing trends over 1951-2010. Figure 4a shows that for those regions, 

increases in the reliability of the model RWHS for the scaled precipitation are smaller than with 

the real precipitation. On the other hand, Figure 3a shows that Oceania had a decreasing trend in 

mean and maximum precipitation in GHCN observations over the last 60 years and, 

correspondingly, Figure 4a shows that unlike the other continents, the RWHS reliability for 

scaled precipitation is higher than for real precipitation for the Oceania. This illustrates that the 

positive/negative impact of increase/decrease in precipitation amount on model RWHS reliability 

is factored out by scaling the precipitation. A
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subsampled climate model simulations show an average 0.15% decade-1

Driving the model RWHS with scaled precipitation based on observations yields on global 

average, that reliability has been increasing at a rate of 0.11% per decade for the 1951-2010 time 

period while the subsampled ISI-MIP simulations show an average 0.13% decade

 decrease in reliability, 

with all 5 ISI-MIP models showing decreasing reliability. Table 4 also shows that in 

observations, the reliability increases at a rate of 2.34% per K of global warming. This is 

however quite different than the results of the subsampled ISI-MIP, which shows an average 

0.60% decrease in the reliability per K warming. 

-1

The RWHS model driven by full land area ISI-MIP data also yields decreasing trend in 

reliability for both real and scaled precipitation, with lower rate that the subsampled ISI-MIP 

(Table 4, columns 3-4), even though the mean and maximum precipitation shows increasing 

trend in that time period (Table 2). However, as stated earlier, the rate of increase in maximum 

precipitation is almost double the rate of mean precipitation (Table 2). The ISI-MIP models 

project that for the future time period of 2011-2099 under high radiative forcing scenario 

(RCP8.5), the volumetric reliability of the model RWHS when driven by real as well as scaled 

precipitation will decrease (Table 4, columns 5-6), even though the models project increasing 

trends for mean and maximum precipitation for that time period (Table 2). However, similar to 

the historical period, the rate of increase in maximum precipitation is significantly greater than 

the rate of increase in mean precipitation for future precipitation projections (Table 2). Figure 5 

shows global maps of changes in decadal volumetric reliability (R

 decrease in 

the reliability. Table 4 also shows that in observations, the reliability of the model RWHS driven 

by scaled precipitation increases at a rate of 1.44% per K of global warming, which is different 

than the results of the subsampled ISI-MIP with an average 0.68% decrease in the reliability per 

K warming. Thus, the model RWHS driven by real and scaled precipitation show that ISI-MIP 

climate models shows an opposite (decreasing) average reliability trend from that calculated 

using GHCN precipitation observations. 

v) of the RWHS system in 

absolute terms (% decade-1) as well as per K of global warming (% K-1

As another way of disaggregating the changes in precipitation and model RWHS reliability 

seen around the world, Figures 6 and 7 depict the average relative change in mean and maximum 

), for real and scaled 

precipitation, for GHCN observation stations over 1951-2010. A
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precipitation (% decade-1) for different precipitation deciles, as well as the absolute change in 

decadal volumetric reliability (% decade-1

Figure 7 presents change in mean and maximum precipitation as well as model RWHS 

reliability by precipitation deciles, for GHCN station observations and average of the 5 

subsampled ISI-MIP climate models, for 1951-2010. Figure 7a shows the relative change in 

mean and maximum precipitation for GHCN stations (% decade

) for real and scaled precipitation, for the same 

precipitation deciles. The lowest deciles represent the driest areas and the highest deciles 

represent the wettest areas. Deciles are calculated based on the average precipitation during each 

study period. Figure 7 shows the average results of the 5 climate models for full land area ISI-

MIP data for 1951-2010 and 2011-2011 time periods. Figure 6a shows that for historical climate 

model simulations, the precipitation increase rates for dry precipitation deciles are higher than 

the higher ones. However, the rate of increase in maximum precipitation is lower than mean 

precipitation for the initial deciles and becomes greater than the mean precipitation, as the 

deciles go higher. Correspondingly, Figure 6b shows that the RWHS reliability has increased for 

the driest deciles and the trend decreases as areas become wetter. As seen in the figure, the 

wettest precipitation deciles have the largest difference between mean and maximum 

precipitation change rate and the reliability changes of the model RWHS there are negative. 

Climate models simulations show that for the dry precipitation deciles where the difference 

between maximum and mean precipitation change rate is not as high as the wet deciles, the 

significant increase in precipitation amount overpowers the smaller change in the precipitation 

distribution and results in increased reliability. Similar pattern is seen for the future 2011-2099 

precipitation projections (Figs. 6c and d). This further indicates the impact of change in 

precipitation distribution on the reliability of water supplies. 

-1). The GHCN shows increasing 

trend for both mean and maximum precipitation, with the rate of change being higher for the 

wetter deciles. Lower (drier) deciles show greater increase in mean than maximum precipitation. 

However, the higher deciles generally show greater increase for maximum than mean 

precipitation. Despite the full ISI-MIP models, the model RHWS driven by GHCN observations 

show increase in reliability for low and high deciles, and decrease for some middle deciles. 

However, the difference between rate of change in mean and maximum precipitation is more 

significant in ISI-MIP models than the GHCN observations. Figure 7c shows that for all 

precipitation deciles, the subsampled ISI-MIP models simulate significantly faster increase in 
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maximum precipitation than mean precipitation. Correspondingly, Figure 7d shows that a 

decreasing trend in modeled volumetric reliability for all those deciles. Figures 6 and 7 illustrate 

that for climate model precipitation simulations, for the precipitation deciles which the maximum 

precipitation is increasing faster than the mean precipitation, the reliability of the model RWHS 

driven by those precipitation time series decreases, or at least increases less rapidly than the other 

deciles. However, the observational precipitation records of the GHCN do not show that 

behavior, as the reliability increases for most deciles. Figs. 6b and 7d show that for the full and 

subsampled ISI-MIP, the volumetric reliability decreases more in wet areas (the higher deciles), 

so that driving the model RWHS with ISI-MIP models misses the increasing reliability trend 

implied by observations over wetter parts of the land surface. Average of relative change in 

decadal volumetric reliability of the RWHS system per K of global warming (% K-1

Discussion 

) for 

different precipitation deciles also shows similar patterns as the trend in absolute reliability. 

Both observations and climate models indicate that mean and maximum precipitation 

averaged over land areas increased since 1951, although the average trend magnitudes obtained 

from the models are smaller than those identified in observations. Maximum precipitation shows 

higher rate of relative change per degree warming (% K-1) than mean precipitation in both 

observations and models. The difference between change in mean and maximum precipitation is 

larger in models, compared to the observations: The modeled subsampled global average of 

relative change per degree warming for mean precipitation is 1.36% K-1 which is considerably 

smaller than the 7.34% K-1 for maximum precipitation, while observations show 7.64 and 

10.14% K-1 increase for mean and maximum precipitation, respectively. Earlier studies have 

used energy balance considerations to explain this pattern seen in GCMs, that unlike the impact 

of global warming on rate of increase in maximum precipitation, which is expected to be close to 

the Clausius-Clapeyron equation slope of approximately 7% per K warming (Asadieh and 

Krakauer, 2015; Pall et al., 2006), the mean precipitation increases at a slower rate around 2% K-

1 (Held and Soden, 2006). However, the GHCN observations show a higher rate of increase in 

precipitation per K global warming compared to GCM simulations of the same time period, 

especially for mean precipitation. One possible reason for this discrepancy may be that 

considerations of thermodynamics and large-scale circulation are valid in the global average, 
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while the GHCN data covers only parts of the land surface, primarily North America, Europe, 

North and East Asia and Oceania. However, subsampling the GCM output shows that, at least 

where there are station observations, observed trends are not well captured. 

Precipitation observations imply that on global average, reliability of the model 

precipitation-driven water supply system under assumed temporally constant demand has been 

increasing at a rate of 0.2% each decade for the 1951-2010 time period, a 2.34% increase per K 

of global warming. However, the subsampled climate models simulations show an average 

0.15% per decade (0.60% per K) decrease in reliability. Scaling the later decades as the initial 

1951-1960 decade would result in equal total annual precipitation for all decades from 1951-

2010 and hence the difference in volumetric reliability of the system in different decades for 

each station/grid-cells can be attributed to the change in precipitation distribution (as opposed to 

mean amount) and its effect on water supply reliability. Our results show that for continents with 

increasing/decreasing trend in precipitation, the reliability of the model RWHS with scaled 

precipitation is respectively smaller/larger than with actual precipitation. This confirms that the 

respective positive/negative impact of increase/decrease in precipitation amount on RWHS 

reliability is factored out by scaling the precipitation. Observations show that for scaled observed 

precipitation, on global average, reliability of the model RWHS has been increasing more 

slowly, compared to the observed-precipitation driven RWHS, at a rate of 0.11% per decade for 

the 1951-2010 time period. Subsampled climate models show a decrease in the reliability of 

RWHS driven by scaled precipitation, with an average 0.13% per decade decrease in reliability. 

Thus, the model RWHS driven by real and scaled precipitation show that ISI-MIP climate 

models shows an opposite (decreasing) average reliability trend from that calculated using 

GHCN precipitation observations. 

Analyses of the full land area GCM simulations show even faster increase in maximum 

precipitation than mean precipitation, for the historical period. The RWHS model driven by full 

land area ISI-MIP data also yields decreasing trend in reliability for both real and scaled 

precipitation, with lower rate that the subsampled ISI-MIP, even though the mean and maximum 

precipitation shows increasing trend in that time period. The considered GCMs project for the 

RCP8.5 forcing scenario that in the 21st century, mean precipitation will have an increasing 

trend of approximately 0.052 % per year on average. Also, the GCMs project that maximum 

precipitation would increase significantly faster than mean precipitation in the future, with a rate 
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of approximately 0.165 % per year. This is greater than the rate of change in both subsampled 

and full land area simulations in the historical time period. The ISI-MIP models project that for 

the future time period of 2011-2099, the volumetric reliability of the model RWHS when driven 

by real as well as scaled precipitation will decrease, at a greater rate than for the historical time 

period and with wider disagreement between models. 

Analysis of historical and future full land area ISI-MIP climate model simulations in 

different precipitation percentiles indicates that for the precipitation deciles where maximum 

precipitation has not increased much faster than mean precipitation  (usually the driest areas), the 

model RWHS reliability has increased. This may be attributed to the increase in precipitation 

amount and little change in precipitation distribution. However, for the precipitation deciles 

where maximum precipitation is increasing faster than mean precipitation (usually the wettest 

areas), the model RWHS reliability has decreased. This implies that the climate models suggest 

that for the areas with large increases in the ratio of maximum to mean precipitation, the 

reliability of the precipitation-fed water supplies decreases, even though the precipitation amount 

has increased. 

Our RWHS driven by observational precipitation shows increased mean reliability. 

Observational precipitation shows faster increase in maximum than mean precipitation, but the 

difference between rate of change in mean and maximum precipitation is less significant than in 

the climate models. However, results show that on global average, the reliability of the model 

RWHS is improving even when the precipitation time series are scaled to remove the impact of 

increasing mean precipitation. The increasing reliability of RWHS at station locations that is 

implied by observations may be explained by a more even distribution of precipitation either 

between seasons or within seasons, despite the observed disproportionate increase in the 

intensity of the heaviest daily precipitation. However, subsampled ISI-MIP climate models show 

a decreasing trend in the model RWHS reliability, suggesting that the current generation of 

GCMs is not accurately representing aspects of precipitation distribution that are important from 

a water resources perspective. A previous analysis suggests that observations are consistent with 

GCMs in showing dry seasons getting relatively dryer compared to wet seasons (Chou et al., 

2013). An analysis using station data over the USA, however, finds increases in precipitation 

frequency during both wet and dry seasons and a decrease in length of dry spells over 1930-2009 

(Pal et al., 2013). A recent comprehensive analysis of different observation-based data sets over 
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land finds that the "wet gets wetter, dry gets dryer" paradigm for the effect of global warming on 

aridity indices is not generally valid for land areas (Greve et al., 2014). Biases in representation 

of precipitation seasonality, including wet season length, in current GCMs have also been 

studied (Pascale et al., 2014). Clearly, further work is needed to better understand the 

disagreement found here between GCMs and observations and its relevance to the reliability of 

different water supplies (e.g. runoff-fed, versus directly precipitation-fed, reservoir systems 

(Huang et al., 2014)). 

Changes in precipitation distribution can result in increased intensity and frequency of 

flood and drought events and also can affect the availability of fresh water resources, which 

requires consideration of both precipitation amount and distribution changes in order to design 

reliable water supply systems. Climate models are known to disagree, among themselves and 

compared to observations, on the magnitude and direction of changes in precipitation amount 

and distribution. The present study shows that the ISI-MIP climate models show different 

direction of change in reliability of a simple water supply system than available station 

observations, although they capture the correct sign of change in precipitation amount. 

The model RWHS used here to compare globally the consequences of observed and 

modeled precipitation changes for supply reliability is not intended to represent any particular 

actual water supply and, for local studies, could be replaced by more sophisticated models that 

better represent the types of water supply of interest to decision making in a particular 

jurisdiction. Based on the present study, we suggest that the future precipitation projections of 

climate models should generally be used with caution for water resources system designs, and 

that more effort needs to be made to understand how to accurately model the physical 

mechanisms for changes in precipitation distribution, as well as in mean amount, if climate 

model projections are to be more useful in designing water supplies to perform well under future 

climate change. 

Conclusion 

Maximum precipitation is increasing faster than mean precipitation in both observations 

and model simulations. This can be interpreted as one index of change in precipitation 

distribution in which a larger fraction of annual precipitation is falling in the heaviest events. The 
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expectation might be that such changes in precipitation distribution would lead to less capability 

of storages in capturing rainwater and hence, less reliable precipitation-fed water supply. Climate 

model simulated precipitation series suggest that for areas with little change in precipitation 

distribution, increase in precipitation leads to increasing water supply reliability, while for areas 

with significant change in precipitation distribution, the reliability of the precipitation-fed water 

supplies is tending to decrease, even where the mean precipitation amount has increased. 

However, our results show that on global average, the reliability of a model RWHS driven by 

observed daily station precipitation inputs is increasing. Climate models underestimate the 

increasing trends in mean and maximum precipitation and also imply the opposite direction of 

change in reliability of the model water supply system compared to the observations: the model 

RHWS driven by climate models’ simulated daily precipitation show a decreasing trend in 

reliability of water supply. We do suggest further investigation of the impact of change in 

precipitation distribution on water supply reliability, using other indices of distribution change. 

Climate models predict that mean and maximum precipitation would continue to increase, 

under a high radiative forcing scenario, with faster trend for maximum precipitation than mean 

precipitation and that the model RWHS driven by modeled daily precipitation would on average 

show a decreasing trend in water supply reliability. However, comparison of historical results 

between observations and models suggest that the current generation of climate models is not 

accurately representing aspects of precipitation distribution that are important from a water 

resources perspective.  These systematic mismatches for the recent decades suggest the need for 

caution in using precipitation trend scenarios derived from climate models as a basis for 

designing water supply systems.  

Appendix 1: Specific Catchment Area and Specific Storage 

In this appendix, we use a 30-year historical precipitation time series of a sample station 

extracted from GHCN-daily in order to illustrate the performance of the implemented model 

RWHS in regard to volumetric reliability. Figure A1.a illustrates the volumetric reliability of the 

model RWHS for different demand values. The daily demand of the building, to be provided by 

the system, is assumed for the sake of illustration to be either 0.2 m3 (200 liters) or 0.4 m3 (400 

liters) (Figure A1.a). We also simulate different values of building catchment area, ranging from 
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50 m2 for a small building to 200 m2

[INSERT FIGURE A1 IN HERE, OR SOMWHERE IN THIS APPENDIX] 

. Figure A1.a illustrates that as the tank storage capacity 

increases, the performance of the system, measured by volumetric reliability, improves. It also 

can be seen from the Figure that larger catchment areas allow smaller tank sizes for the same 

system reliability. 

Table A1 presents the minimum values of tank storage capacity for a volumetric reliability 

(Rv) of 95%, for various combinations of daily demand and catchment area. As an example, the 

RWHS in a building with catchment area of 200 m2 and tank size of 5 m3 would be able to 

supply a daily water demand of 0.3 m3 for the building with 95% reliability. As seen from the 

Table and also logically expected, higher water demands require larger tanks to support the 

demand of the system with any given (in this case 95%) reliability. Small catchment areas 

support high water demands only with huge tank sizes for the system, while catchment areas 

smaller than a threshold cannot provide a 95% reliability for the system with any tank size, as 

seen in the Table as well as Figure 2a, where a 50 m2 area is not enough to gather sufficient 

amount of water for daily water demands of 0.3 m3

[INSERT TABLE A1 IN HERE, OR SOMWHERE IN THIS APPENDIX] 

 or higher. 

Figure A1.a as well as Table A1 show that for a daily demand of 0.2 m3 and catchment area of 

100 m2, tank storage capacity of 4.5 m3 will accommodate a volumetric reliability of 95%. On 

the other hand, for a daily demand of 0.4 m3 and catchment area of 200 m2, storage capacity of 9 

m3 will result in 95% volumetric reliability. As another instance, for a daily demand of 0.2 m3 

and catchment area of 100 m2, tank storage capacity of 1.25 m3 will accommodate a volumetric 

reliability of 70%, where for a daily demand of 0.4 m3 and catchment area of 200 m2, storage 

capacity of 2.5 m3

Accordingly, we developed a formulation for the model RWHS in terms of scaled 

quantities, specific catchment area (A

 will  result in the same 70% volumetric reliability. This illustrates that, with 

doubling the daily demand amount, doubling both the catchment area and storage capacity as 

well will accommodate the same volumetric reliability for the system, which means the daily 

demand value can be eliminated from the aforementioned curves for a standardized formulation. 

s) and specific storage capacity (Cs), defined as follows: 
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�� =
�� × ����  (A1) 

�� =
����  (A2) 

where Ar  is the catchment area [dimensions: L2], Ca is the storage capacity [L3] and Dt is 

the water demand [L3 T-1]. As [-] is specific catchment area; Cs [T] is specific storage capacity 

and �� is average daily precipitation over the study area and study time period [L  T-1]. The value 

of �� is included in the definition of As

Reconsidering the examples described before, with average daily precipitation equal to 4 

mm day

 to make it dimensionless. 

-1 and volumetric reliability of 95%, a specific catchment area of 2 will have the 

corresponding specific storage value of 22.5 days under the meteorological conditions of the 

Puerto Rico station, regardless of daily demand value being 0.2 or 0.4 m3 or any other amount. 

Likewise, for volumetric reliability of 70%, a specific catchment area of 2 will have the 

corresponding specific storage value of 6.25 days, for any daily demand values. Figure A1.b then 

depicts the curves of volumetric reliability (Rv
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) of the system versus specific storage capacity 

(day) at various specific catchment area values, obtained from the newly developed indices. 

Figures A1.b, or its equivalent constructed for any other desired area, could be utilized in 

designing the tank size of the model RWHS to meet a particular reliability target, for any 

assumed demand. 
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Tables 

 

Table 1. Global-averaged results of annual-mean and annual-maximum precipitation trend 

analysis, for the GHCN station observation data and the 5 subsampled ISI-MIP climate models, 

from 1951 to 2010. The 5 ISI-MIP models give 5 global averages, of which the minimum, 

maximum, median, mean, and standard deviation are presented. 

 

Average of 

precipitation (P) 

(mm day-1

Slope of Change 

(b) 

) (mm day-1 year-1

Relative change 

in precipitation 

(b/ P) 
) 

(% year-1

Change per K 

global warming 

– Absolute value 

Average 
) 

(% K -1

Change per K 

global warming 

– Precipitation 

weighted 

Average 
) 

(% K -1) 

 
Mean 

precip. 

Max. 

precip. 

Mean 

precip. 

Max. 

precip. 

Mean 

precip. 

Max. 

precip. 

Mean 

precip. 

Max. 

precip. 

Mean 

precip. 

Max. 

precip. 

GHCN 2.21 60.83 0.0017 0.0371 0.075 0.070 7.64 10.14 6.52 8.71 

ISI-MIP 

average 
2.40 39.90 0.0000 0.0205 0.003 0.055 1.36 7.34 1.10 7.73 

ISI-MIP 

min. 
2.39 33.52 -0.0015 -0.0100 -0.069 -0.013 -1.98 1.65 -2.63 1.33 

ISI-MIP 

max. 
2.41 45.93 0.0013 0.0733 0.052 0.165 4.72 11.85 4.93 12.02 

ISI-MIP 

median 
2.40 40.47 -0.0003 0.0086 0.011 0.021 1.78 7.71 1.95 9.00 

ISI-MIP 

St.Dev. 
0.01 5.11 0.0011 0.0325 0.047 0.073 3.17 3.70 3.18 4.00 

 

 

Table 2. Global-averaged results of annual-mean and annual-maximum precipitation trend 

analysis of the 5 full ISI-MIP climate models from 1951 to 2010. Table shows the results for full 

land area data of the models, not the subsampled data as shown in Table 1. The 5 ISI-MIP 
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models give 5 global averages, of which the minimum, maximum, median, mean, and standard 

deviation are presented. 

 

Average of 

precipitation (P) 

(mm day-1

Slope of Change 

(b) 

) (mm day-1 year-1

Relative change 

in precipitation 

(b/ P) 
) 

(% year-1

Change per K 

global warming 

– Absolute value 

Average 
) 

(% K -1

Change per K 

global warming 

– Precipitation 

weighted 

Average 
) 

(% K -1) 

 
Mean 

precip. 

Max. 

precip. 

Mean 

precip. 

Max. 

precip. 

Mean 

precip. 

Max. 

precip. 

Mean 

precip. 

Max. 

precip. 

Mean 

precip. 

Max. 

precip. 

ISI-MIP 

average 
2.37 33.43 0.0002 0.0238 0.039 0.074 7.04 12.94 1.74 10.16 

ISI-MIP 

min. 
2.34 30.35 -0.0001 0.0081 -0.049 0.014 1.22 4.19 0.61 4.15 

ISI-MIP 

max. 
2.40 36.47 0.0007 0.0533 0.089 0.149 15.25 29.64 3.21 20.92 

ISI-MIP 

median 
2.39 33.56 0.0000 0.0161 0.072 0.064 8.09 10.77 1.60 7.99 

ISI-MIP 

St.Dev. 
0.027 2.928 0.0004 0.0182 0.059 0.055 5.74 10.55 1.02 6.91 
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Table 3. Global-averaged results of annual-mean and annual-maximum precipitation trend 

analysis of the 5 ISI-MIP climate models, from 2011 to 2099, under high radiative forcing 

scenario (RCP8.5). The 5 ISI-MIP models give 5 global averages, of which the minimum, 

maximum, median, mean, and standard deviation are presented. 

 

Average of 

precipitation (P) 

(mm day-1

Slope of Change 

(b) 

) (mm day-1 year-1

Relative change 

in precipitation 

(b/ P) 
) 

(% year-1

Change per K 

global warming 

– Absolute value 

Average 
) 

(% K -1

Change per K 

global warming 

– Precipitation 

weighted 

Average 
) 

(% K -1) 

 
Mean 

precip. 

Max. 

precip. 

Mean 

precip. 

Max. 

precip. 

Mean 

precip. 

Max. 

precip. 

Mean 

precip. 

Max. 

precip. 

Mean 

precip. 

Max. 

precip. 

ISI-MIP 

average 
2.47 37.77 0.0018 0.0782 0.052 0.165 1.33 3.92 1.61 4.85 

ISI-MIP 

min. 
2.39 33.28 0.0005 0.0517 -0.031 0.147 -0.39 2.85 0.33 3.45 

ISI-MIP 

max. 
2.51 41.58 0.0030 0.1039 0.110 0.195 2.95 5.03 2.29 7.64 

ISI-MIP 

median 
2.49 39.22 0.0021 0.0805 0.057 0.155 1.05 3.63 2.10 4.31 

ISI-MIP 

St.Dev. 
0.05 4.05 0.0011 0.0213 0.057 0.021 1.33 0.85 0.86 1.71 
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Table 4. Global-averaged results of absolute change in decadal volumetric reliability (Rv

 

) of the model 

RWHS, driven by the 5 subsampled and full ISI-MIP climate models from 1951 to 2010 as well as the 

ISI-MIP climate models from 2011 to 2099 under high radiative forcing scenario (RCP8.5). Results for 

the GHCN station observation data are presented as well. The 5 ISI-MIP models give 5 global averages, 

of which the minimum, maximum, median, mean, and standard deviation are presented. 

Absolute change in decadal Rv (% decade-1
Absolute change in decadal R

) 
v per K global 

warming (% K -1) 

Sub-Sampled 

ISI-MIP 

1951-2010 

Full ISI-MIP 

1951-2010 

Full ISI-MIP 

(RCP8.5) 

2011-2099 

Sub-Sampled 

ISI-MIP 

1951-2010 

Full ISI-MIP 

1951-2010 

Full ISI-MIP 

(RCP8.5) 

2011-2099 

Real 

prcp. 

Scaled 

prcp. 

Real 

prcp. 

Scaled 

prcp. 

Real 

prcp. 

Scaled 

prcp. 

Real 

prcp. 

Scaled 

prcp. 

Real 

prcp. 

Scaled 

prcp. 

Real 

prcp. 

Scaled 

prcp. 

GHCN 0.199 0.114 - - - - 2.340 1.441 - - - - 

ISI-MIP 

average 
-0.151 -0.134 -0.056 -0.072 -0.232 -0.196 -0.600 -0.681 0.233 -0.274 -0.512 -0.412 

ISI-MIP 

min. 
-0.341 -0.196 -0.365 -0.208 -0.443 -0.368 -2.148 -1.339 -1.113 -0.802 -1.065 -0.687 

ISI-MIP 

max. 
-0.045 -0.094 0.046 0.031 0.010 -0.048 0.360 -0.356 0.763 0.392 0.044 -0.086 

ISI-MIP 

median 
-0.139 -0.113 0.030 -0.043 -0.324 -0.199 -0.399 -0.521 0.472 -0.249 -0.587 -0.569 

ISI-MIP 

St.Dev. 
0.117 0.046 0.175 0.093 0.194 0.146 0.957 0.390 0.779 0.438 0.471 0.291 
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Table A1. Minimum necessary tank storage capacity to accommodate a volumetric reliability (Rv

 

) of 

95% 

 Minimum Tank Storage Capacity (m3) for Rv = 95% 

  50 m 100 m2 150 m2 
200 

m
2 

300 

m2 

400 

m2 

600 

m2 2 

Daily Demand 

(m3

0.2 m

/building) 

19.75 3 4.5 3 2.5 2.25 2 1.75 

0.3 m infeasible 3 14 6.75 5 3.75 3.25 2.75 

0.40 m infeasible 3 39.5 14.5 9 6 5 4.5 

0.6 m infeasible 3 infeasible infeasible 28 13.5 10 7.5 

 

Figure Captions 

Figure 1. A behavioral model configuration for a RWHS 

Figure 2. GHCN observational data results for mean and maximum precipitation for 1951-2010: Annual-average 

daily precipitation (mean precipitation) map (mm day-1) (a), Annual-maximum daily precipitation 

(maximum precipitation) map (mm day-1) (d), Relative change in annual-average daily precipitation 

(mean precipitation) map (% year-1) map (b), Relative change in annual- maximum daily precipitation 

(maximum precipitation) map (% year-1) map (e), Relative change in mean precipitation per K of global 

warming (% K-1) map (c) and  Relative change in maximum precipitation per K of global warming (% K-

1

Figure 3. Box plots of full and sub-sampled ISI-MIP climate model runs averaged results (minimum, 25

) map (f). 

th 

percentile, median, 75th percentile and maximum of the 5 model runs) as well as average of GHCN 

observational data (shown as colored circles) for 1951–2010 and 2011-2099 (RCP8.5) precipitation data 

at global and continental scales. Panels a-c show box plots of relative change in mean and maximum 

precipitation (% year-1) for Sub-Sampled ISI-MIP 1951-2010, full ISI-MIP 1951-2010 and full ISI-MIP 

2011-2099, respectively. Panels d-f are box plots of relative change in mean and maximum precipitation 

per K of global warming (% K-1) for Sub-Sampled ISI-MIP 1951-2010, full ISI-MIP 1951-2010 and full 

ISI-MIP 2011-2099, respectively. The yellow colored boxes represent the results of mean precipitation 

and the un-shaded boxes represent the maximum precipitation for the models. The blue and purple circles 

in (a) and (d) represent the GHCN average results for mean and maximum precipitation, respectively. 

The red plus-shaped markers shown outside some of the boxes represent model outliers. 
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Figure 4. Boxplots of ISI-MIP model runs averaged reliability trends (minimum, 25th percentile, median, 75th 

percentile and maximum of the 5 model runs) as well as average of GHCN observational data (shown as 

colored circles) for 1951–2010 and 2011-2099 precipitation data in global and continental scale. (a), (b) 

and (c) represent the boxplots of change in decadal volumetric reliability (Rv) of the RWHS system (% 

decade-1) for real and scaled precipitation for full ISI-MIP 1951-2010, Sub-Sampled ISI-MIP 1951-2010 

and full ISI-MIP 2011-2099, respectively. (d), (e) and (f) represent the boxplots of change in decadal 

volumetric reliability (Rv) of the RWHS system per K of global warming (% K-1

Figure 5. Global maps of change in decadal volumetric reliability (R

) for full ISI-MIP 1951-

2010, Sub-Sampled ISI-MIP 1951-2010 and full ISI-MIP 2011-2099, respectively. The yellow-shaded 

boxes represent the results of mean precipitation and the un-shaded boxes represent the maximum 

precipitation from the models. The green and purple circles represent the GHCN average for mean and 

maximum precipitation, respectively. The few red plus-shaped markers shown outside some of the boxes 

represent model outliers. 

v) of the RWHS system driven by GHCN 

station observation data for 1951-2010: (a) and (b) represent the relative change Rv (% decade-1) for 

actual and scaled precipitation, respectively. (c) and (d) represent the relative in Rv per K of global 

warming (% K-1

Figure 6. Plots of global-averaged results for different precipitation deciles, with lower percentiles representing the 

driest areas and higher deciles representing the wettest areas:  Relative change in precipitation (% decade

) for actual and scaled precipitation, respectively. 

-

1) for full land area data from ISI-MIP models for 1951-2010 (a) and 2011-2099 (RCP8.5) (c), absolute 

change in decadal volumetric reliability (Rv

Figure 7. Plots of global-averaged results for different precipitation deciles, with lower percentiles representing the 

driest areas and higher deciles representing the wettest areas:  Relative change in precipitation (% decade

) of the model RHWS driven by full ISI-MIP dataset for 

1951-2010 (b) and 2011-2099 (RCP8.5) (d). Plots show average of the 5 models. 

-

1) for GHCN station observations (a) and the 5 subsampled ISI-MIP models (c) for 1951-2010, absolute 

change in decadal volumetric reliability (Rv

Figure A1. a) Volumetric reliability (R

) of the model RHWS driven by GHCN station observations 

(b) and the 5 subsampled ISI-MIP models (d) for 1951-2010. For the ISI-MIP results, plots show average 

of the 5 models. 

v) of the model rainwater harvesting system vs. storage capacity at various 

catchment area for daily demands of 0.2 and 0.4 m3. b) Volumetric reliability of the system vs. specific 

storage capacity (day) at various specific catchment area values. 
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